Activities | Families | Sequences | Fold types | References | Help
B6db references: 11137816

type Journal Article
authors Hubbard BK, Thomas MG, Walsh CT.
title Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics
journal Chem Biol
Activity hpgt.aminotransferase
Family hpgt.aminotransferase
sel selected
ui 11137816
year (2000)
volume 7
pages 931-42
 
abstract BACKGROUND: The non-proteinogenic amino acid p-hydroxyphenylglycine is a crucial component of certain peptidic natural products synthesized by a non-ribosomal peptide synthetase mechanism. In particular, for the vancomycin group of antibiotics p-hydroxyphenylglycine plays a structural role in formation of the rigid conformation of the central heptapeptide aglycone in addition to being the site of glycosylation. Initial labeling studies suggested tyrosine was a precursor of p-hydroxyphenylglycine but the specific steps in p-hydroxyphenylglycine biosynthesis remained unknown. Recently, the sequencing of the chloroeremomycin gene cluster from Amycolatopsis orientalis gave new insights into the biosynthetic pathway and allowed for the prediction of a four enzyme pathway leading to L-p-hydroxyphenylglycine from the common metabolite prephenate. RESULTS: We have characterized three of the four proposed enzymes of the L-p-hydroxyphenylglycine biosynthetic pathway. The three enzymes are encoded by open reading frames (ORFs) 21, 22 and 17 (ORF21: [PCZA361.1, O52791, CAA11761]; ORF22: [PCZA361. 2, O52792, CAA11762]; ORF17: [PCZA361.25, O52815, CAA11790]), of the chloroeremomycin biosynthetic gene cluster and we show they have p-hydroxymandelate synthase, p-hydroxymandelate oxidase and L-p-hydroxyphenylglycine transaminase activities, respectively. CONCLUSIONS: The L-p-hydroxyphenylglycine biosynthetic pathway shown here is proposed to be the paradigm for how this non-proteinogenic amino acid is synthesized by microorganisms incorporating it into peptidic natural products. This conclusion is supported by the finding of homologs for the four L-p-hydroxyphenylpyruvate biosynthetic enzymes in four organisms known to synthesize peptidic natural products that contain p-hydroxyphenylglycine. Three of the enzymes are proposed to function in a cyclic manner in vivo with L-tyrosine being both the amino donor for L-p-hydroxyphenylglycine and a source of p-hydroxyphenylpyruvate, an intermediate in the biosynthetic pathway.
last changed 2007/12/11 19:39

B6db references