Activities | Families | Sequences | Fold types | References | Help
B6db references: 22906379

type Journal Article
authors Burrell M, Hanfrey CC, Kinch LN, Elliott KA, Michael AJ.
title Evolution of a novel lysine decarboxylase in siderophore biosynthesis.
journal Mol Microbiol
Activity 4.1.1.18
Family 4.1.1.18.c
sel selected
ui 22906379
year (2012)
volume 485
number 99
pages 1365-2958
 
abstract Structural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l-2,4-aminobutyrate aminotransferase (DABA AT), to synthesize 1,3-diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3-diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis.
last changed 2017/10/23 11:22

B6db references