Activities | Families | Sequences | Fold types | References | Help
B6db references: 29188330

type Journal Article
authors Takehara I, Fujii T, Tanimoto Y, Kato DI, Takeo M, Negoro S
title Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate
journal Appl Microbiol Biotechnol
Activity 2.6.1.116
Family 2.6.1.116
sel selected
ui 29188330
year (2018)
volume 102
number 2
pages 801-814
 
keywords 4-Aminobutyrate; 6-Aminohexanoate; Adipate; Aldehyde dehydrogenase; Aminotransferase; Bioconversion
abstract Arthrobacter sp. strain KI72 grows on a 6-aminohexanoate oligomer, which is a by-product of nylon-6 manufacturing, as a sole source of carbon and nitrogen. We cloned the two genes, nylD 1 and nylE 1 , responsible for 6-aminohexanoate metabolism on the basis of the draft genomic DNA sequence of strain KI72. We amplified the DNA fragments that encode these genes by polymerase chain reaction using a synthetic primer DNA homologous to the 4-aminobutyrate metabolic enzymes. We inserted the amplified DNA fragments into the expression vector pColdI in Escherichia coli, purified the His-tagged enzymes to homogeneity, and performed biochemical studies. We confirmed that 6-aminohexanoate aminotransferase (NylD1) catalyzes the reaction of 6-aminohexanoate to adipate semialdehyde using α-ketoglutarate, pyruvate, and glyoxylate as amino acceptors, generating glutamate, alanine, and glycine, respectively. The reaction requires pyridoxal phosphate (PLP) as a cofactor. For further metabolism, adipate semialdehyde dehydrogenase (NylE1) catalyzes the oxidative reaction of adipate semialdehyde to adipate using NADP+ as a cofactor. Phylogenic analysis revealed that NylD1 should be placed in a branch of the PLP-dependent aminotransferase sub III, while NylE1 should be in a branch of the aldehyde dehydrogenase superfamily. In addition, we established a NylD1/NylE1 coupled system to quantify the aminotransferase activity and to enable the conversion of 6-aminohexaoate to adipate via adipate semialdehyde with a yield of > 90%. In the present study, we demonstrate that 6-aminohexanoate produced from polymeric nylon-6 and nylon oligomers (i.e., a mixture of 6-aminohexaoate oligomers) by nylon hydrolase (NylC) and 6-aminohexanoate dimer hydrolase (NylB) reactions are sequentially converted to adipate by metabolic engineering technology.

A correction to this article is available online at https://doi.org/10.1007/s00253-017-8682-x

fulltext file.pdf (1,709,212 bytes)
last changed 2019/10/18 13:18

B6db references