Activities | Families | Sequences | Fold types | References | Help
B6db references: 31455636

type Journal Article
authors Yin J, Wei Y, Liu D, Hu Y, Lu Q, Ang EL, Zhao H, Zhang Y
title An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine
journal J Biol Chem
Activity pydd
Family pydd
sel selected
ui 31455636
year (2019)
volume 294
number 43
pages 15662-15671
 
keywords 2-oxoglutarate; 3-hydroxypropionate; aminotransferase; enzyme kinetics; enzyme phylogeny; nitrogen metabolism; pyridoxal phosphate; pyrimidine; reductase; β-alanine
abstract The reductive pyrimidine catabolic pathway is the most widespread pathway for pyrimidine degradation in bacteria, enabling assimilation of nitrogen for growth. This pathway, which has been studied in several bacteria including Escherichia coli B, releases only one utilizable nitrogen atom from each molecule of uracil, while the other nitrogen atom remains trapped in the end product β-alanine. Here, we report the biochemical characterization of a β-alanine:2-oxoglutarate aminotransferase (PydD) and a NAD(P)H-dependent malonic semialdehyde reductase (PydE) from a pyrimidine degradation gene cluster in the bacterium Lysinibacillus massiliensis. Together, these two enzymes converted β-alanine into 3-hydroxypropionate (3-HP), and generated glutamate, thereby making the second nitrogen from the pyrimidine ring available for assimilation. Using bioinformatics analyses, we found that PydDE homologs are associated with reductive pyrimidine pathway genes in many Gram-positive bacteria in the classes Bacilli and Clostridia. We demonstrate that Bacillus smithii grows in a defined medium with uracil or uridine as its sole nitrogen source and detected the accumulation of 3-HP as a waste product. Our findings extend the reductive pyrimidine catabolic pathway and expand the diversity of enzymes involved in bacterial pyrimidine degradation.
last changed 2020/02/13 14:01

B6db references