Activities | Families | Sequences | Fold types | References | Help
B6db references: 6276387

type Journal Article
authors Zalkin H, Yanofsky C.
title Yeast gene TRP5: structure, function, regulation
journal J Biol Chem
Activity 4.2.1.20
Family 4.2.1.20
sel selected
ui 6276387
year (1982)
volume 257
number 3
pages 1491-500
 
abstract The nucleotide sequence of the yeast gene TRP5 and its 5' and 3' flanking regions was determined. The deduced coding sequence for tryptophan synthase contains 2,127 base pairs. The protein chain has a calculated molecular weight of 76,544. Yeast tryptophan synthase, a bifunctional protein, has a primary structure which corresponds to an Escherichia coli tryptophan synthase alpha chain-beta chain fusion. An NH2-terminal 239 amino acid segment of yeast tryptophan synthase is homologous with E. coli tryptophan synthase alpha subunit, while a distal 389 amino acid residue segment is homologous to the E. coli tryptophan synthase beta chain. This order of segments of the yeast enzyme is the reverse of the chromosomal order characteristic of all prokaryotes that have been examined. The two segments are joined by a connecting region of 28 residues in the yeast enzyme which is not homologous to either the alpha or beta chains of the bacterial enzyme. A portion of the connecting region of yeast tryptophan synthase exhibits nucleotide sequence similarity to the 3' terminus of E. coli trpC and the trpC-trpB intercistronic region. Active site cysteine, histidine, and lysine residues in the beta 2 subunit of E. coli tryptophan synthase are conserved in the yeast enzyme. Also conserved in the yeast enzyme are 6/8 amino acid residues having an important role in maintaining the structure and function of the E. coli tryptophan synthase alpha subunit. S1 nuclease mapping was used to identify three major mRNA transcripts with different 5' termini. Potential T-A-T-A sites for transcription initiation were identified, as well as other sequences that occur frequently in yeast genes. A 5' flanking region of TRP5 was shown by DNA/DNA hybridization to be present in multiple copies in the yeast genome. TRP5 mRNA levels, measured by RNA/DNA hybridization, increased 2- to 7-fold in response to starvation for either tryptophan or histidine, indicating transcriptional regulation.
last changed 2008/02/27 18:30

B6db references