Activities | Families | Sequences | Fold types | References | Help
B6db references: 77044658

type Journal Article
authors Noguchi, T.; Minatogawa, Y.; Okuno, E.; Kido, R.
title Organ distribution of rat histidine-pyruvate aminotransferase isoenzymes
journal Biochem J
ui 77044658
year (1976)
volume 157
number 3
pages 635-41.
keywords Animal
abstract The organ distribution of rat histidine-pyruvate aminotransferase isoenzymes 1 and 2 was examined by using an isoelectric-focusing technique. Isoenzyme 1 (pI8.0) is present only in the liver and its activity is increased by the injection of glucagon, whereas isoenzyme 2 (pI5.2) is distributed in all tissues (liver, kidney, brain and heart) tested, and is not affected by glucagon injection. Isoenzyme 2 of the liver, kidney, brain and heart was purified by the same procedure and characterized. Isoenzyme 2 preparations from these four tissues were nearly identical in physical and enzymic properties. These properties differed from those previously found for the highly purified isoenzyme 1 preparation of rat liver. Isoenzyme 2 was active with pyruvate but not with 2-oxoglutarate as amino acceptor. Amino donors were effective in the following order of activity: tyrosine greater than histidine greater than phenylalanine greater than kynurenine greater than tryptophan. Very little activity was found with 5-hydroxytryptophan. The apparent Km for histidine was about 0.45 mM. The Km for pyruvate was about 4.5 mM with histidine as amino donor. The amino-transferase activities of isoenzyme 2 towards phenylalanine and tyrosine were inhibited by histidine. The ratio of aminotransferase activities towards these three amino acids was constant through gel filtration, electrophoresis, isoelectric focusing and sucrose-density-gradient centrifugation of the purified isoenzyme 2 preparations. These results suggest that these three activities are properties of the same enzyme protein. Sephadex G-150 gel filtration and sucrose-density-gradient centrifugation yielded mol.wts. of approx. 95000 and 92000 respectively. The pH optimum was between 9.0 and 9.3.
last changed 2002/11/14 15:16

B6db references