Activities | Families | Sequences | Fold types | References | Help
B6db references: 87269639

type Journal Article
authors Phillips, R. S.
title Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol- lyase, and tryptophan synthase
journal Arch Biochem Biophys
Activity 4.1.99.2
ui 87269639
year (1987)
volume 256
number 1
pages 302-10.
 
keywords Catalysis
abstract The reactions of tryptophanase, tyrosine phenol-lyase, and tryptophan synthase with a new class of substrates, the O-acyl-L-serines, have been examined. A method for preparation of O-benzoyl-L-serine in high yield from tert.-butyloxycarbonyl (tBoc)-L-serine has been developed. Reaction of the cesium salt of tBoc-L-serine with benzyl bromide in dimethylformamide gives tBoc-L-serine benzyl ester in excellent yield. Acylation with benzoyl chloride and triethylamine in acetonitrile followed by hydrogenolysis with 10% palladium on carbon in trifluoroacetic acid gives O-benzoyl-L-serine, isolated as the hydrochloride salt. O-Benzoyl-L-serine is a good substrate for beta- elimination or beta-substitution reactions catalyzed by both tryptophanase and tyrosine phenol-lyase, with Vmax values 5- to 6-fold those of the physiological substrates and comparable to that of S-(o- nitrophenyl)-L-cysteine. Unexpectedly, O-acetyl-L-serine is a very poor substrate for these enzymes, with Vmax values about 5% of those of the physiological substrates. Both O-acyl-L-serines are poor substrates for tryptophan synthase, measured either by the synthesis of 5-fluoro-L- tryptophan from 5-fluoroindole and L-serine catalyzed by the intact alpha 2 beta 2 subunit or by the beta-elimination reaction catalyzed by the isolated beta 2 subunit. With all three enzymes, the elimination of benzoate appears to be irreversible. These results suggest that the binding energy from the aromatic ring of O-benzoyl-L-serine is used to lower the transition-state barrier for the elimination reactions catalyzed by tryptophanase and tyrosine phenol-lyase. Our findings support the suggestion (M. N. Kazarinoff and E. E. Snell (1980) J. Biol. Chem. 255, 6228-6233) that tryptophanase undergoes a conformational change during catalysis and suggest that tyrosine phenol- lyase also may undergo a conformational change during catalysis.
last changed 2002/11/12 16:17

B6db references