Activities | Families | Sequences | Fold types | References | Help
B6db references: 18799456

type Journal Article
authors Agren D, Schnell R, Oehlmann W, Singh M, Schneider G.

title Cysteine Synthase (CysM) of Mycobacterium tuberculosis Is an O-Phosphoserine Sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria.
journal J Biol Chem
Activity 2.5.1.113
Family 2.5.1.113
sel selected
ui 18799456
year (2008)
volume 283
number 46
pages 31567-74
 
abstract The biosynthesis of cysteine is a crucial metabolic pathway supplying a building block for de novo protein synthesis but also a reduced thiol as a component of the oxidative defense mechanisms that appear particularly vital in the dormant state of Mycobacterium tuberculosis. We here show that the cysteine synthase CysM is, in contrast to previous annotations, an O-phosphoserine-specific cysteine synthase. CysM belongs to the fold type II pyridoxal 5'-phosphate-dependent enzymes, as revealed by the crystal structure determined at 2.1-A resolution. A model of O-phosphoserine bound to the enzyme suggests a hydrogen bonding interaction of the side chain of Arg(220) with the phosphate group as a key feature in substrate selectivity. Replacement of this residue results in a significant loss of specificity for O-phosphoserine. Notably, reactions with sulfur donors are not affected by the amino acid replacement. The specificity of CysM toward O-phosphoserine together with the previously established novel mode of sulfur delivery via thiocarboxylated CysO (Burns, K. E., Baumgart, S., Dorrestein, P. C., Zhai, H., McLafferty, F. W., and Begley, T. P. (2005) J. Am. Chem. Soc. 127, 11602-11603) provide strong evidence for an O-phosphoserine-based cysteine biosynthesis pathway in M. tuberculosis that is independent of both O-acetylserine and the sulfate reduction pathway. The existence of an alternative biosynthetic pathway to cysteine in this pathogen has implications for the design strategy aimed at inhibition of this metabolic route.
last changed 2016/10/04 16:15

B6db references