Activities | Families | Sequences | Fold types | References | Help
B6db families: 4.3.1.19

4.3.1.19
Activity 4.3.1.19
Description Threonine ammonia-lyase
Notes Rather compact family, built around the validated sequences from bacteria and plants.
Bacteria often possess two isozymes, one biosynthetic (relatively long sequence) and the other biodegradative (shorter sequence).
The validated archaeal enzyme (from Pyrobaculum) has been termed a racemase, but is in fact a promiscuous catalyst, carrying out both the deamination of L-Ser and L-Thr and, less efficiently, the racemization of the same amino acids.

Animals can degrade threonine using serine deaminases (EC 4.3.1.17), which are phylogenetically close to threonine deaminases.

PDB 2GN1;2GN2;
PLP Fold Type II
PLP-dependent Domain
Domain alignment
Domain hmm
Fold type II

Number of sequences 39
Sequences in seed alignment
ArchaeaYP_930546 (Pyrobaculum islandicum); YP_920018 (Thermofilum pendens); YP_001736957 (Candidatus Korarchaeum cryptofilum OPF8); YP_001540767 (Caldivirga maquilingensis);
BacteriaABQ73316 (Mycobacterium tuberculosis); AAD35443 (Thermotoga maritima); NP_951545 (Geobacter sulfurreducens); NP_273919 (Neisseria meningitidis); AAQ60761 (Chromobacterium violaceum); NP_832162 (Bacillus cereus); THD1_SALTY (Salmonella typhimurium); NP_939921 (Corynebacterium diphtheriae); ZP_00117909 (Cytophaga hutchinsonii); THD1_CORGL (Corynebacterium glutamicum); ZP_00102817 (Desulfitobacterium hafniense); THD1_HAEIN (Haemophilus influenzae); NP_720699 (Streptococcus mutans); THD1_BACSU (Bacillus subtilis); THD1_ECOLI (Escherichia coli); CAD78318 (Pirellula sp.); CAE09296 (Wolinella succinogenes); ABK70104 (Mycolicibacterium smegmatis MC2 155); THD1_BURCE (Burkholderia cepacia); THD2_ECOLI (Escherichia coli); THD2_SALTY (Salmonella typhimurium); NP_372585 (Staphylococcus aureus); THD1_LACLA (Lactococcus lactis (subsp. lactis));
FungiTHDH_ARXAD (Arxula adeninivorans); EAA59095 (Aspergillus nidulans); THDH_YEAST (Saccharomyces cerevisiae); EAK92244 (Candida albicans); AAS51458 (Eremothecium gossypii); CAP91842 (Penicillium rubens Wisconsin 54-1255);
Other_EukaryaBAH84766 (Entamoeba histolytica); XP_004184395 (Entamoeba invadens IP1);
ViridiplantaeTHD1_ARATH (Arabidopsis thaliana); AAG59585 (Nicotiana attenuata); THD1_LYCES (Lycopersicon esculentum); AC090882 (Oryza sativa);

DISPLAY: Fasta format, alignment, hmm, hmm_local


Reference sequence THD2_ECOLI
Domain interval 21-312
Catalytic site 58 K
 
References
 Wu M, Crismaru CG, Salo O, Bovenberg RAL, Driessen AJ (2020) Impact of classical strain improvement of Penicillium rubens on amino acid metabolism during ß-lactam production Appl Environ Microbiol 86 e01561-19.

 Favrot L, Amorim Franco T, Blanchard JS. (2018) Biochemical Characterization of the Mycobacterium smegmatis Threonine Deaminase Biochemistry 57 6003-6012.

 Sharma R, Keshari D, Singh KS, Singh SK (2017) Biochemical and functional characterization of MRA_1571 of Mycobacterium tuberculosis H37Ra and effect of its down-regulation on survival in macrophages Biochem Biophys Res Commun 487 892-897.

 Husain A, Jeelani G, Sato D, Ali V, Nozaki T. (2010) Characterization of two isotypes of l-threonine dehydratase from Entamoeba histolytica. Mol Biochem Parasitol 170 100-4.

 Ohnishi M, Saito M, Wakabayashi S, Ishizuka M, Nishimura K, Nagata Y, Kasai S. (2008) Purification and characterization of serine racemase from a hyperthermophilic archaeon, Pyrobaculum islandicum J Bacteriol 190 1359-65.

 Risso C1, Van Dien SJ, Orloff A, Lovley DR, Coppi MV. (2008) Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens J Bacteriol 190 2266-74.

 Simanshu DK, Savithri HS, Murthy MR. (2006) Crystal structures of Salmonella typhimurium biodegradative threonine deaminase and its complex with CMP provide structural insights into ligand-induced oligomerization and enzyme activation J Biol Chem 281 39630-41.

 Wessel PM, Graciet E, Douce R, Dumas R. (2000) Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments Biochemistry 39 15136-43.

 Wartmann, T.; Rosel, H.; Kunze, I.; Bode, R.; Kunze, G. (1998) AILV1 gene from the yeast Arxula adeninivorans LS3--a new selective transformation marker Yeast 14 1017-25.

 Bornaes, C.; Petersen, J.G.; Holmberg, S. (1992) Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases Genetics 131 531-9.

 Mockel, B.; Eggeling, L.; Sahm, H. (1992) Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum J Bacteriol 174 8065-72.

 Eisenstein E (1991) Cloning, expression, purification, and characterization of biosynthetic threonine deaminase from Escherichia coli J Biol Chem 26 5801-7.

 Samach, A.; Hareven, D.; Gutfinger, T.; Ken-Dror, S.; Lifschitz, E. (1991) Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs Proc Natl Acad Sci U S A 88 2678-82.

 Datta, P.;Goss, T.J.; Omnaas J.R.; Patil, R.V. (1987) Covalent structure of biodegradative threonine dehydratase of Escherichia coli: homology with other dehydratases Proc Natl Acad Sci U S A 84 393-7.

Articles on 4.3.1.19
last changed 2009/07/15 13:32

B6db families